
 1

A CORBA Extension for Intelligent Software Environments

Robert E. Filman††, David J. Korsmeyer*†, Diana D. Lee††

{ rfilman | dkorsmeyer | ddlee }@mail.arc.nasa.gov
†NASA Ames Research Center, MS/269-3

††NASA Ames Research Center, Caelum Research Corp., MS/269-1

Moffett Field, CA 94305

Abstract

We describe the implementation of a technology that achieves system-wide
properties in large software systems by controlling and modifying inter-
component communications. Traditional component-based applications intermix
the code for component functionality with support for systematic properties. This
produces non-reusable components and inflexible systems. The Object
Infrastructure Framework (OIF) separates systematic properties from functional
code and provides a mechanism for weaving them together with functional
components. This allows a much richer variety of component reuse and system
evolution. Key elements of this technology include intercepting inter-component
communications with discrete, dynamically configurable “injectors,” annotating
communications and processes with additional meta-information, and a high-
level, declarative specification language for describing the mapping between
desired system properties and services that achieve these properties. We have
implemented these ideas in a CORBA/Java framework for distributed computing,
and are currently applying them to a distributed system for the analysis of
aerospace design (wind-tunnel, and CFD) data.

Keywords

Object Infrastructure Framework, distributed computing, middleware, frameworks,
CORBA, injectors, Intelligent Synthesis Environment, ility, security, reliability,
manageability, quality of service

Intelligent Engineering Software Environments

 “The ISE [Intelligent Synthesis Environment] aims to link scientists, design
teams, manufacturers, suppliers, and consultants in the creation and operation of
an aerospace system and in synthesizing its missions. The ultimate goal is to
significantly increase creativity and knowledge and eventually dissolve rigid
cultural boundaries among diverse engineering and science teams.”
— Goldin, Venneri and Noor [1]

 2

NASA programs and missions are widely dispersed among NASA centers and
contractors. Typically this has implied a geographic centralization of skills required for a
mission to be completed. As we enter the 21st century, the need for more productive
engineering environments will greatly change the way we engineer systems. No longer
do we have the option of slow design cycles and separate component engineering for
aerospace systems. The mantra “faster, cheaper, better” is required by the funding
realities, the high quality, and rapid mission requirements of today programs. As Goldin,
et. al have observed, we need Intelligent Synthesis Environments that allow engineering
tools to be freely applied to the virtual design and analysis of NASA products.

Virtual design implies the capability to assess and analyze the impact and variation
of design decisions without developing (or with very limited development of) hardware
prototypes. This distributed and collaborative design simulation is within the technical
range of existing design tools except for the fact that these tools tend to be hand-crafted,
finely tuned, and built to operate in a unique and well formulated computational
environments. Intelligent synthesis requires something else.

Traditionally, we built engineering analysis and design tools for specific computing
architectures and purposes. Any distribution, sharing, or composition of such elements
was explicitly part of their design and laboriously constructed to the particular
architecture and topology available. Today we are seeing the emergence of “software bus
architectures” that allow well-defined components to provide services accessible from
anywhere on a network. The most prominent (and simplest) of such systems is the World
Wide Web, which serves (in its most straightforward application) to provide fixed and
parameterized “documents” in response to requests. While this works well for web-
surfing and shopping, more complex applications require invoking a greater variety of
actions on complex data. Such applications demand application program interfaces. The
state-of-the-art in providing such remote application interfaces is Distributed Object
Technology (DOT), where the system presents to the programmer the illusion that a
remote object or functionality is local to the programmer’s environment, and can be
called and manipulated like any other local object. Examples of DOT technology include
CORBA, DCOM, and Java RMI.

DOT allows distributed components to invoke each other and communicate, but is
only a first step towards an Intelligent Synthesis Environment. Users and contributors to a
system of shared data and tools will demand appropriate policies on issues such as
security, reliability, data ownership, quality of service, and management and monitoring
of processes. (We call such qualities ilities.) In the following sections, we briefly
overview the implementation of DOT, describe a technology (discrete behavior injectors
on the communication paths between components) for extending DOT to allow dynamic
management of ilities, describe some of our experience in implementing such injectors,
and touch on the application of this technology to intelligent synthesis environments.

Distributed Object Technology

How are distributed applications built? Current technology uses sockets, messages and
events, remote procedure calls (e.g., DCE), or Object Request Brokers (ORBs, including,
for example, CORBA [2], JavaRMI and DCOM). Without too much loss of generality,
we focus on ORB frameworks and use CORBA as our exemplar.

 3

ORBs allow object-oriented applications to use objects that are not in the same
address space. The key semantic advantage of ORBs is that ORBs provide location
transparency—to an application program, a remote object “looks like” any other (local)
object. This is accomplished by delegation to “proxy” objects. On the client side of the
application, we create a proxy object for the server (the stub). (Here we use “client” and
“server” generically as the originator and recipient of a request.) From the point of view
of the client code, the stub is an object like any other object that supports the interface of
the server. The stub is responsible for accepting calls from client programs, and
translating these calls into a “linear form” that can be transmitted over a network
(marshaling). It sends them over the net to the server machine, where a corresponding
proxy (the skeleton) re-inflates that linear form into object references and primitive data
types (demarshaling) and calls the appropriate method on the actual server
implementation object. The inverse process is used for the return value. Marshaling
handles all issues relating to transmission and translation of the various data types. To the
application code, this process is transparent: the client is unaware that the client side
proxy is delegating the request to a remote implementation object and the server does not
suspect that it is being used by a remote call. Figure 1 illustrates the ORB architecture.

The client and server share the definition of the server interface through an Interface

Definition Language (IDL). A CORBA vendor provides compilers that take IDL and
generate the code for stub and skeleton proxies in the target languages. (One of the major
virtues of CORBA is its multilingual capabilities. A client written in one programming
language can, relatively seamlessly, invoke services implemented in another, with data

CORBA
Stub

CORBA
Skeleton

ClientClient ServerServer

Client-
Side

Proxy

Server
-Side
Proxy

Network

Client Machine Server Machine

Figure 1: CORBA stubs and skeletons

 4

representations translated automatically. CORBA is thus a favorite of those trying to
integrate multi-lingual, distributed, legacy applications into a coherent whole.)

ORB technology provides object location transparency and hides the details of
marshaling and communication protocols. What it doesn’t do is handle issues of partial
failures, security, quality of service and other such ility concerns. ORBs such as CORBA
and Enterprise Java Beans provide different discrete mechanisms for particular ility
issues, but such mechanisms typically (1) provide only a finite number of choices for the
application architect, and (2) require a good understanding and diligent application of the
mechanism by the application programmer.

The Object Infrastructure Framework

The implementation heart of OIF is inserting behavior on the communication path
between components. This effectively serves to “wrap” services with additional actions at
both the client and server ends. The OIF wrapping mechanism is distinguished by the
following features: (1) OIF wrappers are composed of discrete “injectors” that are first
class objects. Injectors can be sequenced, combined, treated uniformly by utilities, and
dynamically manipulated as a program is running. (2) Wrapping is by object/method.
That is, a specific object (or proxy) can have its own unique set of injectors for a
particular method. (3) Injectors communicate among themselves and with the client and
server by annotations, meta information about the call and result. Typical annotations
include session identification, request priority, sending and due dates, version and
configuration, futures, cyber wallet, public key, sender identification and conversational
thread. OIF propagates this meta information into the thread of a called service and from
there to the annotations of that service’s calls. (4) OIF provides a high-level specification
compiler (Pragma) that takes a description of the desired properties of an application and
how to achieve these properties and arranges these behaviors on the appropriate
wrappers. Figure 2 illustrates the relationship of injectors to CORBA skeletons and stubs.

The motivation of these features and their relationship to the Pragma compiler is
discussed in the paper Inserting Ilities by Controlling Communications [3]. Here we
consider the implementation mechanism in greater detail.

Injectors

In general, the programmer uses Pragma to define a default sequence of injectors for a
given interface and method. In the course of program execution, it is possible (with the
appropriate privileges) to modify the injector sequence for any particular proxy (or the
defaults for a class of proxies.)

Operationally, each of the stubs and skeletons have been constructed to obtain the
injector sequence for each method and to invoke the first injector in that sequence with
(1) a (classical CORBA) request object that embodies (a) the target server, (b) the
operation to be performed on that server, (c) the arguments of that operation, and (d) a set
of annotations for this operation, and (2) the continuation: the set of injectors to be
executed after this injector. Annotations are name-value pairs, where the name is a string
and the value, any CORBA value. (It is the responsibility of annotation users to correctly
maneuver in the CORBA type space. For security reasons, future versions of the system

 5

will restrict the annotations, program arguments and results accessed and modified by an
injector to those declared for that injector.)

Grossly, an injector wants to perform some actions before the server action and
some after. It is the responsibility of an injector to invoke the remaining injectors of the
continuation between its before and after actions (that is, to call the “next” operation on
the continuation.) This structure allow injectors to alter the flow of control in interesting
ways—for example, to forgo calling the after injectors (as is done in the caching injector,
below) and to use the natural exception-catching mechanisms to catch (and correct)
exceptions in the continuation processing.

Elsewhere we have argued that the injector mechanism can be used to imbue
applications with ilities such as security, reliability, quality of service, and manageability
[3]. To make the discussion more concrete, in this section we consider specific injectors
we have implemented (or are in the process of implementing) and their impact on these
ilities.

Authen.Authen.

RetryRetry

Mgmt.Mgmt.

ReliabilityReliability

CORBA
Stub

Check auth.Check auth.

QoSQoS

Mgmt.Mgmt.

ReliabilityReliability

CORBA
Skeleton

ClientClient ServerServer

Client-
Side

Proxy

Server
-Side
Proxy

Network

Figure 2: Injectors on stubs and skeletons

 6

Security

Classically, security has four components: (1) authentication, determining the identity of
a user; (2) access control, deciding if a user is permitted to do a specific operation; (3)
encryption, encoding messages between correspondents; and (4) intrusion detection,
recognizing attacks on the system. We have developed injectors to do authentication and
access control.

The authentication injector keeps the user’s credentials in a request annotation. The
injector runs on both the client and server. If the server-side injector is unhappy with the
credentials offered in the annotation, it raises an exception that is caught by the client
side. The client injector can then query the user (in our example, demand the user present
their Java ring) and restart the request with the newly obtained credential values. (A more
thorough version of this injector would encrypt the credential values.)

The access control injector simply raises an exception if the user identification
annotation does not have the appropriate privileges to perform the specified operation. A
more complex version of this injector would be able to examine the arguments of the
request and the resulting value, thereby differentiating access with respect to the actual
values. For example, a defense-contractor’s phone directory service might censor (or
even fake) requests for information about people whose employment is meant to be
secret, except from trusted sources.

While it is possible to do encryption with injectors, injectors are not the best
mechanism. The difficulty lies in encrypting and decrypting references to objects—such
things must be recognized as objects by the demarshaling code, and encrypting them after
demarshaling would preclude this. We discuss this issue with respect to CORBA
interceptors, below.

An intrusion detection injector could be used report suspicious service requests to a
security agency [4], though is not in itself an intrusion detection algorithm. Similarly,
such injectors could be notified by security agencies of new patterns of suspicious
activities to look for, and could be used to reject intrusive requests.

Reliability

We have created two injectors focussed on increased reliability. The error retry injector
catches errors and retries them (up to some predefined limit). This is useful in situations
where the system load or connection noise tends to time out some requests that would
otherwise work. By retargeting to a peer of the original service target, the error retry
injector could be used to produce redundancy or load balancing. Of course, this strategy
is appropriate only on services without harmful side effects—it the error happens after
the service, such an injector could be invoking the service repeatedly.

The rebind injector notices broken connections and opens a connection to an
alternative server. This replicates a provision found in some CORBA ORBs at the system
level.

We have also experimented with using replication to maintain a more reliable
database. Replication mechanisms could be built into injectors, though it seems better to
treat the replication injector as seeking to rebind until replication confirmation is
received.

 7

Quality of service

By quality of service we mean to encompass a variety of requirements for getting things
done quickly and within time constraints. The real-time community recognizes two
varieties of real-time systems, hard real-time and soft real-time. Hard real-time systems
have tasks that must be completed at particular deadlines, or else the system is incorrect.
Soft real-time systems seek to allocate resources so as to accomplish the most important
things. To achieve hard real-time systems, one can either reserve resources and plan
consumption or use some kind of anytime algorithm. Aside from that latter, somewhat
esoteric choice, hard real-time requires cooperation throughout the processing chain (for
example, in the underlying network), for the promise of particular service can be
abrogated in too many places. That is, you can’t get hard real-time unless you build your
entire system with that in mind. For such systems, we have built a service reservation
injector, that invokes the appropriate calls to reserve service paths on an ATM network.

Soft real-time quality of service is amenable to several injector mechanisms. We
have built a queue-manager injector that queues requests to a server and performs higher-
priority requests first. Priorities are conveyed as annotations. Since the default behavior is
to propagate the annotations of a service to its calls, this mechanism performs chained
calls at the priority of the original.

We have also developed a side-door injector that open socket connections between
the client and server sides for the transport of massive data sets without the overhead of
marshaling and the CORBA stack.

Quality of service can also be improved just by making things faster. We have
injectors for two methods of overall program performance improvement. The futures
injector implements futures. Most models of concurrent computing are either
synchronous or asynchronous. In a synchronous system the maker of a request waits for
the recipient of the request to finish (and perhaps to return an answer). This is the model
of telephone calls and procedure calls. Synchronous communication has the advantage
that the requestor has an easy time knowing what a response is about (it's right there in
the code—this exact spot) but the disadvantage that the requestor has to wait for the
answer (when it could be doing other things.) In an asynchronous communication, a
requestor sends off a request and then continues about its business. This is like a letter or
event-based messaging system. Asynchronous communication has the advantage that the
requestor can continue processing while the request is being handled, but the
disadvantage that there's no simple way to match responses into the requestor's code.

Futures are a mechanism for bridging the conceptual distance between these two.
With futures, requests immediately return a future, an object in the requestor’s space.
Think of this future as a "box." The system will arrange for the reply to the message to go
into the box. At any time, the requestor can open the box (try to use the reply). If the
reply is there, the requestor can use it (and doesn't have to wait.) If the reply isn't there
yet, the requestor waits for the answer to appear. (We also allow an interface for the
program to “shake the box” to see if there’s anything there yet, but such a program knows
it’s getting a future—otherwise, the behavior is transparent to the application.) The
trickiest part of a futures injector is that the application program wants not only to get
back this box with the right properties, but also that the box needs to support the right
interface (be the right type of thing with the right type of operations.) Using the futures
injector thus requires extending the IDL compiler to create such types.

 8

The caching injector is more straightforward. This injector caches the values of
remote calls. When a call to the same underlying object, on the same method, with the
same arguments is used again, it retrieves the value from the cache and dispenses with the
remote call. Of course, this is appropriate only for services that are functional and free of
side-effects, and has the potential for impairing other injectors, such as an accounting
injector that wants to measure service use. (As have such caches on the World Wide Web
caused trouble for those who wish to count eyeballs on advertisements.)

Manageability

We take a network control perspective on manageability, dividing manageability into five
elements: performance measurement, accounting, failure analysis, intrusion detection,
and configuration management. We have developed an accounting injector that reports on
service use (and totals charges) and a logging injector that can be used to report arbitrary
events to a debugging system and to perform updates on graphical user interfaces. We
have also developed a smart “publish-and-subscribe” event notification system and
incorporated it into the framework to allow the appropriate spread of information about
events throughout the system.

We have also begun work on a configuration management injector that dynamically
tests for incompatible versions of injectors and automatically updates stale configurations
to the current version. The dynamic nature of injectors thus provides the potential for
uniformly “self-updating” software, a critical element over the evolution of long-lived
systems.

Related work

We have described a mechanism for separately specifying system-wide concerns in a
component-based programming system and then weaving the code handling those
concerns into a working application. This is the theme of Aspect-Oriented Programming
(AOP). OIF is an instance of AOP, and brings to AOP a particularly elegant division of
responsibilities. Key work on AOP includes Harrison and Ossher’s work on Subject-
Oriented Programming [5] which extends OOP to handle different subjective
perspectives; the work of Aksit and Tekinerdogan on message filters [6], which, like OIF,
reifies communication interceptors; Lieberherr’s work on Adaptive programming [7]
which proposed writing traversal strategies against partial specifications; and Kiczales
and Lopes [8] work on languages for separate specifications of aspects, which effectively
performs mixins at the source-code language level. Czarnecki and Eisenecker’s book [9]
includes a good survey of AOP technology.

The idea of intercepting communications has occurred several times in the history of
computer science. Perhaps the earliest examples were in Lisp: the Interlisp advice
mechanism and mix-ins of MacLisp. A more modern realization is seen in mediators
[10], which recognizes the implicit agent-hood of the communication interception
elements. More recently, the CORBA standard has been extended to provide interceptors,
programmer-defined operations that run in the communication path. From our point of
view, this is the right idea, wrongly implemented. CORBA interceptors run after the
call’s arguments have been marshaled, making them opaque to the interceptor code
(though well-prepared for encryption). CORBA interceptors are also considerably more

 9

structurally rigid than the OIF framework’s injectors, not being objects to be manipulated
at run-time. If one is particularly fond of CORBA interceptors, one can view our work as
a methodology for using them.

Thompson et. al [11] present an OIF-like use of injector-like plug-ins in a web
architecture. Examples of uses of these plug-ins include performance monitoring and
collaborative documents.

It is common to tackle ility concerns by providing a framework with specific
choices about those concerns. Examples of such include transaction monitors (e.g.,
Encina, Tuxedo) and distributed frameworks like Enterprise Java Beans and CORBA.

The use of a separate specification language for creating filters parallels the work at
BBN on quality of service [12], where an IDL-like Quality Description Language is
woven with IDL to affect system performance.

Discussion

A problem with large engineering software applications is that the majority of the code is
devoted not to implementing desired input-output behavior but to providing system-wide
properties like reliability, availability, responsiveness, performance, security, and
manageability. While services to support system requirements may be modularized and
packaged, the calls to these services must be sprinkled and coordinated throughout the
components of the system. This produces code where the original design has been
obscured by code to support system requirements. This further requires changing the
actual source code in response to system-wide policy changes.

NASA has undertaken several activities to address the issues associated with large-
scale distributed applications, particularly supercomputing applications. The NASA
Information Technology Base Program [13], and NASA High Performance Computing
and Communication Program [14] are coordinating funding of implementations of an
“Information PowerGrid.” The distributed supercomputing grids aim to build on system-
wide systems like Globus [15]. While this looks to be a worthy effort to improve
massive computational codes with C and FORTRAN interfaces, the more likely
benefactors of distributed, collaborative design usually don’t require the same
programming interfaces or desire access to be on a supercomputing grid. The
programming methods provided by the grid packages instill and promote the same
mixing of application and support system requirements, just in an improved fashion.

NASA Ames Research Center's Object Infrastructure Framework (OIF) is an
example of Aspect-Oriented-Programming whose goal is to simplify the development of
object-oriented, distributed engineering software systems by providing an architecture
that separates code that supports input-output behavior from code that achieves system
requirements. This then allows for independent development of these two different
concerns. The CORBA/Java implementation is a toolkit that addresses the popular and
effective programming object/language paring.

As distributed large-scale analysis, design and engineering programs are developed
for NASA missions in 21st century, more intelligent software frameworks will be used to
rapidly provide the high degree of robust applications NASA’s Missions and Programs
needs. The OIF is such a framework and will be used in several NASA distributed
applications supporting the Intelligent Synthesis Environment, and Information
Technology Base Programs. We are currently applying the OIF framework to the

 10

implementation of the third version of the DARWIN system [16], a tool for the
management, distribution, and analysis of aerospace (wind-tunnel, and CFD) data
available to researchers. This version of DARWIN will rely on OIF to improve
robustness, security, managability and overall performance.

In closing, we note that annotation is a key concept for the ISE environment. The
work described here is concerned with annotating communications between active
processing elements, but that is not the limit of the uses of annotation. An ISE will
contains many possible data sets, with varying dependencies, configurations details,
ownership rights, and so forth. Keeping track of such annotations, responding to the
annotations in processing, and asserting the correct annotations for derived objects will
prove an important enabling principle of ISE-like environments.

Acknowledgments

The ideas expressed in this paper have emerged from the work of the MCC Object
Infrastructure Project. We thank Stu Barrett, Carol Burt, Deborah Cobb, T.W. Cook,
Phillip Foster, Andre Goforth, Barry Leiner, Ted Linden, Erik Mettala, David Milgram,
Steve Rodgers, Gabor Seymour, Tom Shields, Doug Stuart and Craig Thompson for their
contributions.

References
1. Goldin D. S. Venneri S. L. Noor A. K. Beyond Incremental Change. IEEE Computer

1998; 31(10): 31-39.
2. Siegel, J. CORBA: Fundamentals and Programming, New York: Wiley, 1996.
3. Filman R. Barrett S. Lee D. Linden T. Inserting Ilities by Controlling

Communications. Submitted. http://www.mcc.com/projects/oip/papers/ins_ilities.htm
4. Filman R. Linden T. Communicating Security Agents. The Fifth IEEE-Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises—International
Workshop on Enterprise Security. Stanford, California, June 1996, 86-91.

5. Harrison W. Ossher H. Subject-Oriented Programming (A Critique of Pure Objects).
Proc. OOPSLA ’93. ACM SIGPLAN Notices 1993; 28 (10): 411-428.

6. Aksit M. Tekinerdogan B. Solving the modeling problems of object-oriented
languages by composing multiple aspects using composition filters. AOP '98
workshop position paper, 1998.
http://wwwtrese.cs.utwente.nl/Docs/Tresepapers/FilterAspects.html

7. Lieberherr K. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns, Boston: PWS Publishing Company, 1996.

8. Kiczales G. Lamping J. Mendhekar A. Maeda C. Lopes C. Loingtier J.-M. Irwin J.
Aspect-Oriented Programming. Xerox PARC Technical Report, February 97, SPL97-
008 P9710042. http://www.parc.xerox.com/spl/projects/aop/tr-aop.htm

9. Czarnecki. K. Eisenecker, U. Generative Programming: Methods, Techniques, and
Applications, Reading, Massachusetts: Addison-Wesley, 1999.

10. Wiederhold G. Mediators in the Architecture of Future Information Systems. IEEE
Computer 1992; 25 (1): 38-49.

11. Thompson C. Pazandak P. Vasudevan V. Manola F. Palmer M. Hansen G. Bannon T.
Intermediary Architecture: Interposing Middleware Object Services between Web

 11

Client and Server” To appear in Computing Surveys.
http://www.objs.com/OSA/Intermediary-Architecture-Computing-Surveys.html

12. Schantz R. Bakken D. Karr D. Loyall J. Zinky J. Distributed Objects with Quality of
Service: An Organizing Architecture for Integrated System Properties. OMG-
DARPA-MCC Workshop on Compositional Software Architectures, Monterey,
California, Jan. 1998. http://www.objs.com/workshops/ws9801/papers/paper099.doc

13. NASA Information Technology Base Program, http://science.nas.nasa.gov/IT/
14. High Performance Computing and Communications Program,

http://science.nas.nasa.gov/HPCC/
15. Globus, http://www.globus.org/
16. Joan Walton, Robert E. Filman, and David J. Korsmeyer. “The Evolution of the

DARWIN System.” to appear in 2000 ACM Symposium on Applied Computing
March 2000, Como, Italy.
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/darwin/evolution-of-
darwin.pdf

Vitae

Robert E. Filman is a Computer Scientist with Caelum Research Corporation on the
staff of NASA Ames Research Center. Prior to joining NASA, he was on the staff of
Lockheed Martin, IntelliCorp and Hewlett Packard, and on the faculty of Indiana
University, Bloomington. Dr. Filman is the author (with Daniel P. Friedman) of
Coordinated Computing: Tools and Techniques for Distributed Software (McGraw-Hill),
is the Associate Editor-in-Chief of IEEE Internet Computing, and has published in the
areas of software engineering, distributed computing, network security, programming
languages, artificial intelligence, and human-machine interface. He received his B.S.
(Mathematics), M.S. (Computer Science) and Ph.D. (Computer Science) from Stanford
University.

David J. Korsmeyer is a Senior Project Scientist in the Computational Sciences Division
at NASA Ames Research Center. He is the Level 2 Manager within NASA’s
Information Technology Base Program for the aptly named Analytical Tools and
Environments for Design Element and lead the development of DARWIN. Dr.
Korsmeyer was recently chosen as the Chief IT Architect for Science and Engineering
Infrastructure by NASA’s Chief Information Officer (CIO) and Chief Technologist
Office (CTO). Dr. Korsmeyer is also the Special Assistant for Information Technology
for the ISE Program Office. He received his B.S. (Aerospace Engineering) from the
Pennsylvania State University, and his M.S. (Aerospace Engineering) and Ph.D.
(Aerospace Engineering) from the University of Texas at Austin.

Diana D. Lee is a Computer Scientist with Caelum Research Corporation on the staff of
NASA Ames Research Center. Prior to joining NASA, she was on the staff of
Microelectronics and Computer Technology Corporation, Lockheed Martin, and
International Business Machines. Ms. Lee received her B.A. (Mathematical Sciences)
from Rice University and her M.S. (Applied Mathematics) from Santa Clara University.
Ms. Lee is also an adjunct faculty member in the Graduate School of Engineering at
Santa Clara University.

